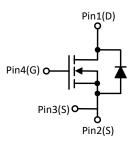


42A,1200V N-Channel Silicon Carbide Power MOSFET


Features

- High blocking voltage
- Low on-resistance with high junction temperature
- High-speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Qrr)
- RoHS compliant

Applications

- Switch Mode Power Supplies
- DC/DC converters
- Solar Inverters
- Battery Chargers
- Motor Drives

Absolute Maximum Ratings (@Tj=25°C unless otherwise noted)					
Parameter	Symbol	Ratings	Unit		
Drain-Source Voltage	V _{DS}	1200	V		
Gate Source Voltage	V _{GS}	-5/+20	V		
Drain Current Continuous Tc=25°C		lo	42	А	
Drain Current Pulse	Ідм	84	А		
Power Dissipation(Tc=25°C)	PD	208	W		
Operating Temperature/ Storage	TJ/Tstg	-55 ~ +175	°C		

Thermal Characteristics				
Parameter	Symbol	Тур	Unit	
Thermal Resistance ,Junction-to-Ambient	$R_{\theta JA}$		°C/W	
Thermal Resistance Junction-to-Case	R _{eJC}	0.68	°C/W	

Electrical Characteristics (@Tj=25°C unless otherwise noted)						
Parameter Symbol Test (Test Conditions	Min	Тур	Мах	Unit
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} =0V, I_D =100 μ A	1200			V
Gate Leakage Current	Igss	V _{GS} =20V		10	250	nA
Zero Gate Voltage Drain Current	IDSS	V _{DS} =1200V, V _{GS} =0V		11	100	μA
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =5mA	2		4	V
Drain-Source On-state Resistance	RDS(on)	V _{GS} =20V, I _D =20A		78	100	mΩ
Total Gate Charge	Qg			52		nC
Gate- Source Charge	Q _{gs}	V _{GS} =-5/+20V,V _{DS} =800V, I _D =20A		17		nC
Gate- Drain Charge	Q_{gd}			15		nC
Tum-on Delay Time	t _{d(on)}			35		ns
Turn-on Rise Time	tr	V _{GS} =-5/+20V,V _{DS} =800V,		16		ns
Turn-off Delay Time	$t_{d(off)}$	$I_D=20A$, $R_G=2.5\Omega$,		43		ns
Turn-off Fall Time	t _f			12		ns
Input Capacitance	Ciss			1128		pF
Output Capacitance	Coss	V _{GS} =0V,V _{DS} =1000V, f=1.0MHz,VAc=25mV		86		pF
Reverse Transfer Capacitance	C _{rss}			5		pF

Reverse Diode Characteristics (@Tj=25°C unless otherwise noted)						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Continuous Diode Forward Current	Isd				42	А
Diode Forward Voltage	Vsd	Is=20A, V _{GS} =0V	4			V
Reverse Recovery Time	t _{rr}	$I_{\rm S} = 20A, V_{\rm GS} = -5V,$		26		ns
Reverse Recovery Charge	Qrr	V _{DS} =800V di/dt =2100 Α/μs <i>,</i>		163		nC

GMS080120Q GOOD-ARK Electronics

Ratings and Characteristics Curves

(TA = 25°C unless otherwise noted)

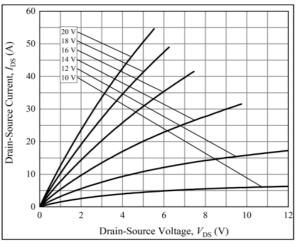


Figure 1. Typical Output Characteristics at TJ = -55 $^\circ C$

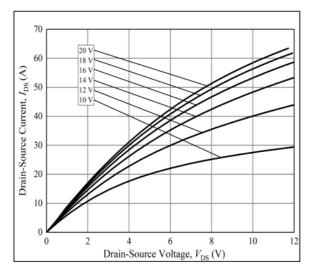


Figure 3. Typical Output Characteristics at TJ = 175 $^{\circ}$ C

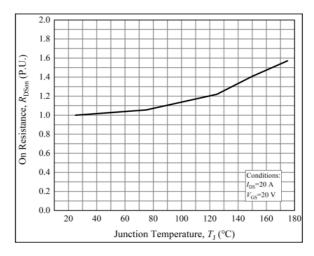


Figure 5. Normalized On-Resistance vs. Temperature

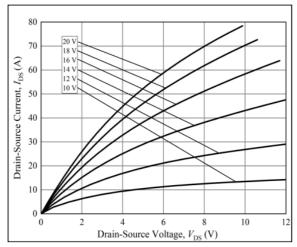


Figure 2. Typical Output Characteristics at TJ = 25 °C

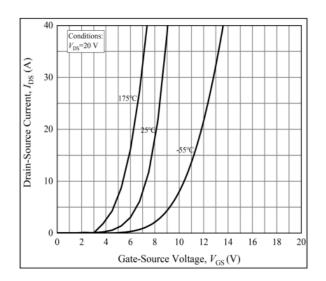


Figure 4. Typical Transfer Characteristics for Various Temperature

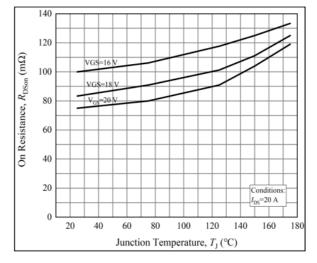


Figure 6. On-Resistance vs. Drain Current for Various Temperatures

GMS080120Q GOOD-ARK Electronics

-10

(V) = (V)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Figure 7. On-Resistance vs. Temperature for Gate

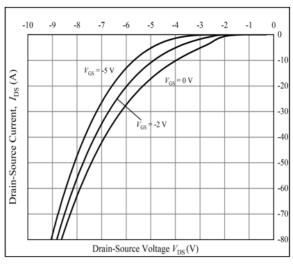


Figure 9. Typical Body Diode Characteristics at TJ = 25 $^\circ\!\!\!C$

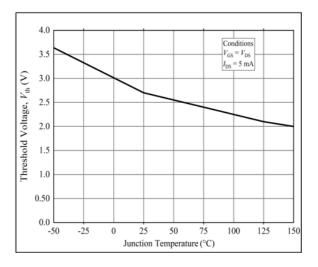


Figure 11. Typical Threshold Voltage vs. Temperature

Figure8. Typical Body Diode Characteristics at TJ = -55 °C

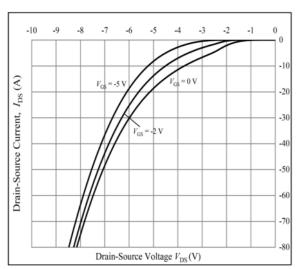


Figure 10. Typical Body Diode Characteristics at TJ = 175 $^{\circ}\mathbb{C}$

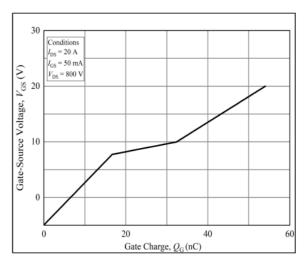


Figure 12. Typical Gate Charge Characteristics at TJ = 25 $^\circ\!\!\mathbb{C}$

GMS080120Q GOOD-ARK Electronics

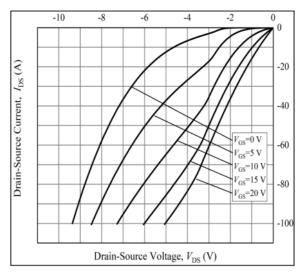
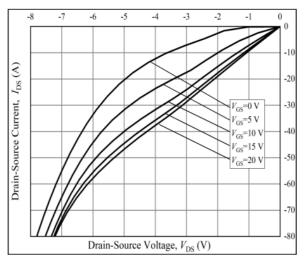



Figure 13. Typical 3rd Quadrant Characteristics at TJ = -55 $^{\circ}\mathrm{C}$

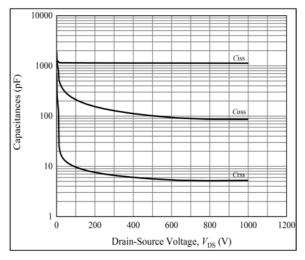
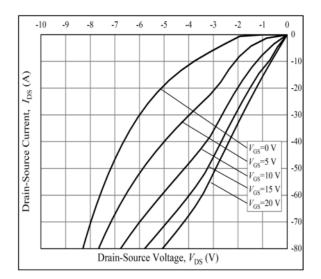



Figure 17. Typical Capacitances vs. Drain-Source Voltage

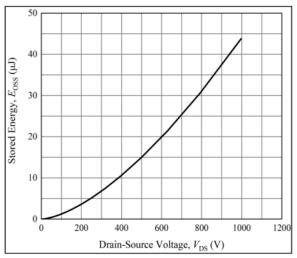


Figure 16. Typical Output Capacitor Stored Energy

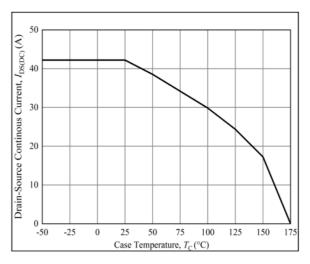


Figure 18. Continuous Ibs Current Derating Curve

GMS080120Q GOOD-ARK Electronics

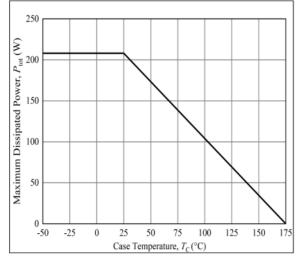


Figure 19. Power Dissipation Derating Curve

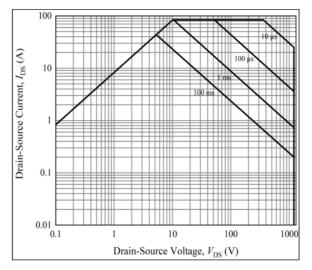


Figure 21. Safe Operate Area

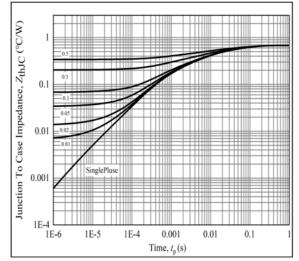
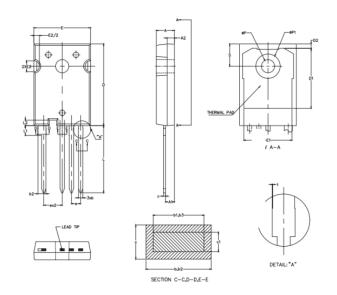



Figure 20. Typical Transient Thermal Impedance (Junction – Case) with Duty Cycle

Package Outline Dimensions (Unit: millimeters)

TO-247-4L

TO-247-4L					
	Min.	Max.		Min.	Max.
А	4.9	5.1	D1	16.25	16.85
A1	2.31	2.51	D2	1.05	1.35
A2	1.9	2.1	E	15.75	15.9
b	1.16	1.26	E1	13.26	-
b1	1.15	2.22	E2	2.9	3.1
b2	2.16	2.26	е	2.5	4BSC
b3	2.15	2.22	L	18.3	18.6
С	0.59	0.66	L1	-	2.8
c1	0.58	0.62	L2		1.5
D	22.4	22.6	ΦР	3.5	3.7
S	6.05	6.25	ΦΡ1		7.4
t	0	0.15			

Revision History

Document Version	Date of release	Description of changes
Rev.A	2023.02.08	Preliminary Datasheet

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Suzhou Good-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a third party.

Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website home page. (http://www.goodark.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, Please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials.

Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.